Slow Food piange sul latte inquinato

Gennaio 30th, 2009
Post2PDF Versione PDF | No Comments

La vicenda del latte crudo non pastorizzato vive una nuova giovinezza grazie ad convegno di Slow Food ed alla compiacente sintesi di una giornalista di Reppubblica che taglia una frase (ed il pensiero) al Prof. Calabrese fino a fargli dire che il latte non sterilizzato e’ vivo e fa bene.

Scarica (qui) l’articolo.

Nella categoria: News, OGM & Agricoltura italiana

Negli USA esistono i consulenti scientifici e contano davvero

Gennaio 30th, 2009
Post2PDF Versione PDF | No Comments
Al contrario dell’Italia, negli USA la Scienza ha un ruolo reale, concreto e rispettato. La segretaria di Stato dell’amministrazione Obama, Hillary Clinton ha nominato la sua consulente scientifica sciegliendo una delle piu’ prestigiose ricercatrici statunitensi impegnata da anni a favore dell’uso degli OGM e della biotecnologia in agricoltura, anche per combattere i cambiamenti climatici e l’insicurezza alimentare.

Science Diplomacy in the 21st Century- Nina V. Fedoroff, Cell, v. 136, January 9, 2009, Elsevier Inc. 91 (Science and Technology Adviser to the Secretary of State and to the Administrator of the U.S. Agency for International Development (USAID), U.S. Department of State, Washington DC 20520, USA)

‘Science diplomacy is the use of scientific collaborations among nations to address the common problems facing 21st century humanity and to build constructive international partnerships. There are many ways that scientists can contribute to this process.’

Bill Gates, arguably the world’s most famous technocrat, gave a remarkable speech during the 2008 Davos World Economic Forum, calling for a new form of capitalism to go beyond traditional philanthropy and government aid. Citing examples ranging from the development of software for people who cannot read to developing vaccines at a price that Africans can afford to pay, Gates said such projects ” provide a hint of what we can accomplish if people who are experts on needs in the developing world meet with scientists who understand what the breakthroughs are, whether it’s in software or drugs” ( exec/billg/speeches/2008/01-24WEFDavos.mspx. ).

He suggested that we need to develop a new business model that would allow a combination of the motivation to help humanity and the profit motive to drive development. He called it “creative capitalism,” capitalism leavened by a pinch of idealism and altruistic desire to better the lot of others.

Scientists and engineers have an important role to play in creating what New York Times columnist Tom Friedman calls a “flat world,” a world of economic opportunity made equal through electronic communication technologies (http:// bookshelf/the-world-is-flat ). This transformation has not yet penetrated into the poorest parts of the world and needs much more scientific and technical investment. But today, most scientists look to foreign institutions for top-notch graduate students and postdocs to populate their laboratories. The notion of becoming a science diplomat, of taking time out from a busy and competitive career to teach, develop research collaborations, or start a business in the least advanced countries is just not on the radar screen for most scientists and engineers.

Yet there are such opportunities, both in the US Department of State and the US Agency for International Development (USAID), as well as in non-governmental organizations, such as the National Academy of Sciences, for scientists and engineers to use their scientific and technical skills in the service of international diplomacy.

I took one such opportunity last year when, as a geneticist and molecular biologist at the Pennsylvania State University, I was invited to serve as the Science and Technology Adviser to the US Secretary of State. My position is not a political one: I have served current Secretary of State Condoleeza Rice and I will serve Secretary-designate Hillary Clinton upon her assumption of office this month. I accepted the position because my involvement in scientific interactions between US scientists and scientists in the former Soviet Union through the 1990s convinced me of the profound stabilizing influence that scientific interactions can exert between countries with deeply discordant ideologies and political systems. Not long after I joined the State Department, I received an invitation from USAID Administrator Henrietta Fore to be her Science and Technology Adviser, as well. The mission she gave me was to assist her in restoring the scientific and technical strength of the agency to enable the better use of science and technology for international development.

My primary task at both the US Department of State, the home base of our international diplomatic corps, and USAID is to increase scientific input into the many activities of the Department and the Agency. The Office of the Science Adviser to the Secretary of State was established in 2000 in response to a National Research Council study, titled “The Pervasive Role of Science, Technology, and Health in Foreign Policy” ( openbook.php?isbn=0309067855), that highlighted the attrition of scientists from State Department ranks at a time when the importance of science and technology was expanding in every aspect of foreign policy. Under the leadership of the first Science Adviser to the Secretary of State, Dr. Norman Neureiter, the number of active scientists in the department began to grow again as he promoted the expansion of the AAAS Science Diplomacy Fellows program ( ) within the State Department. Today we have roughly 30 new AAAS Fellows joining us every year for 1-2 years of service. Many stay on to make careers in the State Department, becoming science diplomats serving either in Washington DC or as Foreign Service Officers.

My predecessor as Science Adviser, Dr. George Atkinson, created the Jefferson Science Fellowship program (, which provides an opportunity for tenured academic scientists and engineers farther along in their careers than the typical AAAS fellow to work in the State Department. Jefferson Science Fellows come to the State Department for a year, funded by their own university as they would be on a sabbatical leave. The State Department covers their local living and travel expenses. Fellows then consult for the

State Department for an additional 5 years after returning to their home institutions. Jefferson Science Fellows are often individuals who already have a keen awareness of the importance of international collaborations and use their association with the State Department to broaden their influence and involvement in foreign relations and development efforts. For example, Dr. Osama Awadelkarim, a Sudanese-born Professor of Materials Science at the Pennsylvania State University, served as a Jefferson Science Fellow in 2006. His passionate devotion to enhancing scientific and engineering expertise in Africa took him to several African countries to teach and to establish collaborations, as well as to talk with government officials and champion the importance of international scientific interactions.

In a speech given at the 2006 World Food Prize symposium, Secretary of Defense Robert Gates said the following: “It could be argued that our inability to continue our investment in human capital on a scale that we did in the 1960s and 1970s is a factor that has contributed at least in some measure to instability in many places today and hostility to the United States.The United States was the key influence in developing the Indian agricultural university system, the key contributor to the African agricultural universities, and to Asian and Latin American agricultural universities as well. But such US programs are now a pale shadow of what they once were. Science has disappeared. Human capital development has disappeared. And the investments for long-term institution building have nearly disappeared.”

There remains a profound gap between the citizens of affluent nations, who have access to abundant food, upto- date technology, and excellent educational opportunities, and citizens of the poorest countries of every continent, many of whom lack adequate food, often have no electricity, and have little access to either the Internet or higher education. The technological aspect of this gap has been called the “digital divide” and much has been written about it. Some believe that the problems of the poorest countries are simply solved by cell phones and inexpensive computers that can be used even in places that lack electricity. Certainly these technologies are important and make the job possible, if not easy.

But the problems are deep and stubborn. Perhaps the most poignant disparities exist between the countries of the developed world and much of Africa, where climate, disease, soil exhaustion, and a host of other problems contribute. In his book titled “The Bottom Billion,” economist Paul Collier ( offers an insightful analysis of the many factors that contribute to trapping the poorest nations in continuing cycles of poverty and unrest. The global food crisis of 2008 triggered food riots in more than 30 countries and calls for a new Green Revolution. The first Green Revolution, however, was relatively straightforward, if not easy: improved crop varieties and increased fertilizer use. The next Green Revolution will be more difficult, even if we succeed in overcoming the deep and widespread mistrust of using modern molecular methods for the genetic improvement of crop plants.

In a crowded world, we no longer have the luxury of focusing on the single variable of agricultural productivity. Food, water, energy, health, and economic development are all intertwined. Progress will depend on a high level of education, particularly in science and engineering. All will be impacted by climate change and politics–everywhere. Climate change is a wake-up call to the awareness that we live in a world without borders. Airplanes can make SARS and multidrug-resistant TB everyone’s problem in a heartbeat. Trade barriers between nations and farm subsidies in developed nations stifle agricultural growth in developing countries. The rush toward renewable energy from biofuels accelerates deforestation in the Amazon, however indirectly, and with each acre lost, another multitude of species goes extinct. Wall Street’s problems echo around the world.

And all of these seemingly separate problems turn out to be interconnected. Food and energy are now viewed as fungible. Growing the food–and feed and fiber and fuel–demanded by a still expanding and increasingly affluent human population requires innovations not just in agricultural productivity but also in water and land management, food processing, and transportation. Decimating what remains of the tropic’s forests will as surely exacerbate climate change as it will reduce biodiversity. It’s one big thorny tangle: people, money, food, energy, health, water, land, climate, biodiversity.

How do we as scientists begin to think–and act–on a global scale to address such complicated problems? It seems to me that we must first become citizens not just of our own nations, but of this world without borders. We need to see, experience, and identify with the peoples and the problems of other nations and to recognize the complexity and interconnections among the challenges facing 21st century humanity. And perhaps most importantly of all, we need to understand, at a deep gut level, that all our fates are truly intertwined. We must move quickly to develop the science that will allow us to model and understand the complex system that is our planet and its crust of human activities. We need to invent efficient, nonpolluting means of local power generation. We need to invest in the research that will allow us to improve how we manage water, grow food, battle disease, and build economies into the next generation –and the next.

Science, of course, provides the common language to build bridges between cultures. Education is a stumbling block. The US has educated talented students from around the world for many years. Today virtually every developed country realizes the value to the economy of such talent–and actively seeks to recruit it. But herein lies a paradox: sending its best students to be educated in more developed countries exacerbates a poor country’s problems because the education itself–whether it is a teacher’s certificate, a nursing degree, or a PhD– makes it easier to find employment and a more stable life in a developed country. Such “brain drain” has robbed–and is continuing to rob–many poor countries of their educated people. These are the people who design, develop, and maintain society’s infrastructure –its agriculture, its schools, its clinics, its power, and telecommunications networks. As well, they are the professors and researchers who generate and propagate the knowledge– the science and technology–that are essential in every aspect of life and that are increasingly recognized as the driving forces of successful economies.

I believe that we need a deep paradigm shift in our interactions with the less developed world: from distant aid recipients to partners in building a global future. We need to bring the science, the engineering, and technology and the educational systems of developed countries to bear directly and in new ways to create a world in which all people have the educational and economic opportunities now available almost exclusively in the developed world. I believe this paradigm shift is getting underway–among governments, in foundations, in the business world, and in the academic world. It is driven in some measure by necessity and perhaps in some measure by the fact that modern communications media make the disparities among the nations of the world harshly and constantly apparent to everyone. But there is much, much more to be done and not all of it can be done by governments.

In April, Secretary of State Rice, Secretary of Education Spellings, and USAID Administrator Fore convened a global conference of college and university presidents, companies, and foundations (Higher Education Summit for Global Development, April 29-30, 2008; Its purpose was to explore new ways of connecting the institutions of higher education in the developed and developing worlds across the entire spectrum of what contemporary universities do, from teaching and research, to supporting technology transfer and entrepreneurship.

The means of connecting educational resources and people between continents have never been richer, more varied, or easier. From MIT OpenCourseWare to digital videoconferencing and collaborative software, we can teach and work between countries and continents–and in real time. The Internet and broadband connections are critical; availability is increasing and cost is decreasing but in places remains prohibitive. This is where governments, companies, and foundations can help.

Yet the challenge of connecting people and resources remains, of making global service–what I’ve called science diplomacy –a part of what we do as scientists and engineers, whether we work in a government agency, a university, a research institute, or a company. The traditional approach of educating students in our institutions and laboratories is increasingly unacceptable. President Paul Kagame of Rwanda, arguably the African leader most supportive of science and technology in developing and modernizing his country, gave an articulate and moving talk at the recent Higher Education Summit for Global Development. Bluntly paraphrased, his most salient points are these: “We provide you with foreign aid in the form of trained and educated people. You send us expensive consultants to tell us what we already know” ( President Kagame’s full speech is available at speeches/2008/29_04_08_education_usa.html).

We need our scientists and engineers, our experts of all kinds, whether in the lab or in the diplomatic corps, to help us jump the digital divide, both technically and personally. We need scientists, engineers, and entrepreneurs to coach and teach until the world is truly flat, to call on Friedman’s metaphor again; that is, until all peoples have the educational and economic opportunities to build and live in sustainable knowledge societies. That’s 21st century science diplomacy.

Nella categoria: News, OGM & Insicurezza alimentare, OGM & Salute

Ambientalisti adulti

Gennaio 30th, 2009
Post2PDF Versione PDF | No Comments

La vicenda del coltivatore gallese Jonathon Harrington e’ di estermo interesse. Dalle sue dichiarazioni si vede come si e’ davanti ad una versione da terzo milllennio dell’ambientalismo, che non vende la Luna ma mira ad obbiettivi concreti e perseguibili, che non cerca di proteggere il proprio orticello scaricando su altri l’onere di produrre cibo per 6 miliardi di persone e che non tenta di fermare le lancette della storia nel momento in cui più conviene all’Europa ed è meno appetibile per i Paesi emergenti. Non a caso un ambientalista pro-OGM.

La disobbedienza di Jonathon Harrington e’ largamente motivata e la giurisdizione avra’ un compito non facile per venire a capo delle sue argomentazioni.

Gia’ in Francia l’anno scorso ed in varie zone della nostra Pianura Padana gli imprenditori agricoli progettano eventi di disobbedienza agricola come quella gallese, e pensano a piantare OGM in ossequio alle leggi europee ed in contrasto con quelle nazionali.

Questa soluzione potrebbe essere benvista da tanti (Governo, opposizione, associazioni ambientaliste illuminate, organizzazioni agricole, settori industriali, etc.) che non sanno piu’ come uscire dal vicolo cieco in cui si sono cacciate mettendo all’indice gli OGM. Una soluzione legislativa scaricherebbe su impersonali leggi europee delle scelte che tanti vorrebbero compiere ma in cui tutti attendono che altri facciano la prima mossa.

Why I Planted Genetically Modified Maize on My Welsh Farm
- Jonathon Harrington, Guardian (UK),  January 29, 2009‘The agronomist and farmer who has challenged the GM-free status of Wales by planting GM crops on his land explains why he chose to make a stand against what he sees as the Welsh assembly’s misguided policies’

I find myself accused of a number of heinous acts including “infecting” Wales with GM, acting irresponsibly and possibly of breaking the law. Not bad for a Welsh peasant who simply wishes to try - with the support of the scientific community - to facilitate the introduction of a new and valuable technology into Welsh agriculture.

So what is the precise nature of my supposedly “ill-informed”, “illegal” and “irresponsible” behaviour? The seeds I planted are maize varieties on the EU’s “common list” of approved crops. As such, my legal advice is that it is lawful to plant them within the EU. But according to some of my detractors those rules apparently do not apply in Wales.

Then there is the charge that I have “infected Wales with GM”. With what I ask? Genetic modification is a process as opposed to a product and as such cannot be bought or sold any more than “keyhole surgery”. The analogy of GM technology as a contagion is simply false.

It can of course be used for a variety of purposes: to give plants immunity from pest attack or resistance to disease or more recently the ability to withstand drought. There are a number of potential benefits the technology could offer Welsh farmers if the assembly government showed a more positive attitude towards it.

Of these, maize is possibly the crop with the most potential for us to exploit in that we could use a range of different herbicides which would, for example, not drain into our beautiful river systems. These would also allow us to establish grass leys during the growing season so absorbing the considerable amounts of nitrogen not taken up by the maize crop. This in turn would reduce the often excessive amounts of soil eroded onto our roads and rivers and thereby reduce pollution and conserve our valuable arable land for future production.

Have I removed consumer choice? Again, I believe not. That choice was taken away several decades ago - unless you choose to survive entirely on wild fruit and nuts. We are all either wearing or consuming plant products that have been bred using technology that involves artificially manipulating plant genes. I can’t think of a single crop plant in the UK that has not been bred by artificially mutating its genes using chemicals or radiation. The group of techniques that are commonly referred to as genetic manipulation are simply more precise and safer ways of doing the same thing.

What about the danger of my plants cross-pollinating with other plants and varieties? This is a potential outcome, but since nobody in the UK produces maize for seed and there are no other plants in the UK that are sufficiently closely related to maize to cross-pollinate with it this cannot be a justifiable accusation.

So what have I achieved by my actions? Well I have at last brought the issue to the minds of many people who sought to sweep it under the carpet. And I have done this without endangering anyone and without touching the public purse.

More importantly, the stance of the Welsh Assembly and others is helping to deny a valuable technology to millions. Like most new technologies, GM comes with some potential downsides but these are far outweighed by the enormous advantages it offers: the potential to increase dramatically both yields and the quality of crops harvested. In over 10 years of its use around the world millions of meals have been made from GM plants but no health problems have been reported.

Moreover, GM crops are still in their infancy and future potential gains are extremely exciting. Think of the many thousands of people in Asia who suffer blindness from a lack of vitamin A in their diet - rice, their primary source of carbohydrate, contains no vitamin A. Yet the insertion of genes into rice plants could help reduce this appalling condition dramatically, and this has been made available free of charge by its developers.

Then there are the many farmers who would prefer not to spray their crops with an insecticide when they could grow a variety - say of cotton - resistant to certain pests. We should not deny the millions of people who might benefit from this science by demanding that it be stopped.

If the politicians we employ wish to persist with their ostrich-like attitude then I am sure that the weight of scientific evidence will eventually show them for the luddites they are. For those of us who live in the real world we need to take advantage of every piece of technology we can find to develop our agriculture and help to feed the nearly 1bn of our fellow human beings who are short of food.

* Jonathon Harrington is chartered biologist working in the field on advanced crop technologies. He also has a small farm in the Black Mountains of Wales. He is a consultant for Cropgen, an organisation that promotes crop biotechnology.

Nella categoria: OGM & Europa

DOP ed IGP puniscono le piccole imprese

Gennaio 28th, 2009
Post2PDF Versione PDF | No Comments

Per una volta un articolo che non parla di OGM, ma dei problemi legati ai marchi DP ed IGP ed al tessuto stesso dell’agricoltura italiana. I dati mostrano come i margini di guadagno sono ormai ridotti all’osso ed un investimento in immagine si traduce in un danno commerciale. Ancora una volta si dimostra come andrebbero sostenute due filiere distinte: quella degli OGM e delle produzioni di derrate alimentari da un lato e quella delle produzioni tipiche e certificate dall’altra. Le due filiere si aiuterebbero l’un l’altra senza interferire o penalizzare gli agricoltori, ma per fare un simile passo si dovrebbero abbandonare le guerre di religione e l’ideologia partigiana.

Scrica l’articolo (qui).

Nella categoria: News, OGM & Agricoltura italiana

OGM pensati per l’Africa: un mais resistente alla siccità

Gennaio 28th, 2009
Post2PDF Versione PDF | No Comments
U.S.-African Partnership Developing Drought-Tolerant Maize: African-led project using biotechnology to increase grain harvest.
- Nancy Pontius, January 26, 2009.
Nella categoria: News, OGM & Insicurezza alimentare

Le rubriche di Salmone

Luca Simonetti

Slow Food. Cattivo, sporco e sbagliato

Petrini aggiorna il suo manifesto, “Buono, pulito e giusto”. Qualche…